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Synopsis 

The general validity of four single-point methods for intrinsic viscosity ([q]) determination is 
verified to be unacceptable even for dilute polymer solutions. Also, a direct method based on a 
truncated version of Huggins equation is shown to be less practical in that it involves advanced 
experimentation and is valid only at  sufficiently low concentrations. In view of the shortcoming 
and sophistication of the above procedures, an effective approach is introduced to resolve these 
problems. This novel computation expresses the Huggins coefficient in terms of [q], and the 
associated equations are calibrated against the polymer system of interest. This procedure is 
tested using various polymer solutions with results compatible with those acquired by other 
means. The advantage of the proposed technique is discussed. 

INTRODUCTION 

The intrinsic viscosity ( [ q ] )  of a polymer in solution is a useful parameter 
for polymer characterization. As such, a number of procedures'!' has been 
suggested to determine this important quantity. Usually, the intrinsic viscos- 
ity is computed by the Huggins equation, which is operative below the overlap 
c~ncentration,~ given by 

where qsp is the specific viscosity of a polymer solution with concentration C 
and k is the Huggins coefficient. Accordingly, a plot of qsp/C vs. C would 
give a straight line whose intercept and slope result in [ q ]  and K, respectively. 
Recently, several attempts have been made to estimate [ q ]  directly from a 
single measurement of qsp at an appropriate C. This paper examines critically 
the general validity of these methods, and a novel approach to overcome their 
limitations is presented. 

RESULTS AND DISCUSSION 

The following expressions for single point determinations of [ q ]  have been 
developed respectively by Solomon and C i ~ t a , ~  Ram Mahan Rao and Yaseen,' 
and Deb and Chatterjee': 

[7?1 = - l n d "  (2) 

[771 = ( 1 / W ( V S P  + 1.d (3) 
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where qr is the relative viscosity. Using a semiempirical model for the 
hydrodynamic volume of solvated polymer, Rudin and Wagner' have derived 

+(1.31p - 2.5C) 
[" = Cp(0.524 - 4) (5) 

where p is the density of polymer and + is the volume fraction of swollen 
polymer in solution given by 

0.524Cc ' = 0 .524~  + C( c o  - 1) 

with 

Equation (5) is applied to solve for [ q ]  in conjunction with the Ford's 
relationship 

(8) qr = (1.0 - 2.5+ + ll.0+5 - 11.5+')-l 

This rather complex algorithm may be considerably simplified by converting 
eq. (5) to the following form based on two appropriate approximations: 

for [ 171 >> 2.5/p and %p( = qr - 1) << 1.0. 

is expanded to a series form 
Now we proceed to compare eq. (1) with (2)-(4) and (9). To this end, eq. (1) 

[q]c = qsp(l - kq, + 2k2qZp - 5k3?fp + . a * )  (10) 

Analogously, eqs. (2)-(4) and (9) are respectively recast to 

[ q ] C  = qsp(l - 0 . 2 4 ~ ~ ~  + 5.76 X 10-2qip - 1.38 X 10-2q:p + . . - ) (14) 

all for qsp < 1. Clearly, eqs. (11)-(14) are the special cases of eq. (10) with the 
coefficient k being equal to 0.33, 0.25, 0.25, and 0.24, respectively, when the 
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TABLE I 
The k’ Values at Various qsp for the Four Single-Point Methods 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.005 
0.010 
0.050 
0.100 
0.200 
0.400 
1 .000 
2.000 
3.000 
5.000 

0.333 
0.334 
0.335 
0.336 
0.338 
0.343 
0.353 
0.365 
0.373 
0.384 

0.250 
0.250 
0.248 
0.246 
0.242 
0.234 
0.214 
0.188 
0.168 
0.139 

0.249 
0.245 
0.249 
0.249 
0.247 
0.245 
0.239 
0.231 
0.224 
0.214 

0.240 
0.240 
0.240 
0.242 
0.247 
0.255 
0.272 
0.285 
0.292 
0.298 

*For [ q ]  x- 2.5/p, eq. (5) approximates to [q]C = 1.31+/(0.524 - +), where + is readily 
obtained by the Newton iterative method Using eq. (8). 

second and higher power terms of qap in the series are insignificant for low qSp. 
However, at higher qaP eq. (1) is rearranged to 

In the present context, the coefficient k in eq. (15) is replaced by k’ if the 
product [q]C refers to the one-parameter models, that is eqs. (2)-(5). Im- 
plicitly, the new coefficient k’ is solely dependent on qsp or q,. 

Table I shows the results obtained by eq. (15) for the four single-point 
methods as a function of qsp. Obviously, these simplified expressions are by no 
means equivalent to eq. (l), unless the coefficients k’ and k are identical, thus 
denying the universality of the former. Theoretically, their predictions of [q] 
are susceptible to C, particularly at high qsp. However, in practice, they are 
quite comparable with an average k’ = 0.28 k 0.07 as qap I 1. This is substan- 
tiated by the consistencies of the [q] data on various polymer solutions 
obtained by these methods5 

A general solution to the present problem is possible by using 

[91 = %p/C 

However, eq. (16) is subject to two constraints: (1) the k term in eq. (1) must 
be negligibly small in _comparison with [q], that is, 

E = kq, << 1 (17) 

and (2) the experimental uncertainty in [ 171 should be tolerable in the sense 
that 

where aCS3 is the standard deviation of [q] estimated by eq. (16). Surely, the 
index A depends primarily on the experimental technique utilized to monitor 
q,, as elaborated below. 
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The variance of [q] denoted by Var([q]) arising from the random errors in 
[ determinations via eq. (16) is given by 

where Var(C) and Var(7,) are the variances of C and tsp, respectively. Also 
we have 

where Var(m) and Var(V) are the variances of the mass of polymer (m) and 
volume of solution (V), respectively. Basically, there are two distinct tech- 
niques for measuring 7,. These are the Ubbelohde viscometry (vv) and the 
newly invented differential viscometry (DV).8 The equations pertaining to W 
and DV are respectively 

t s p  = ( V O )  - 1 (21) 

where t and to are the flow times of the polymer solution and pure solvent, 
respectively, Pi is the inlet pressure to a bridge network of four capillaries, 
and AP is the difference in the equilibrium pressure drops across two 
capillaries whose reservoirs are filled with the sample solution and solvent. For 
dilute solutions, eqs. (21) and (22) respectively lead to2 

where Var(t,), Var(Pi), and Var(AP) are the variances of to, Pi, and AP, 
respectively. Combining eqs. (18)-(21) and (23) yields A, which is the square 
root of var( [w[ t i2  [eq. (1911: 

where 

B = Var(C)/C2 = ( u , , J ~ ) ~  + ( U ~ / V ) ~  (25b) 

with uto, om, and uv being the standard deviations (square roots of variances) 
of to, m, and V, respectively. Interestingly, while c is directly proportional to 
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TABLE I1 
Values of Viscometric Parameters Computed at k = 2/3 

0.010 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.030 
0.100 
0.300 
0.500 
0.800 
1.000 
2.000 
3.000 
5.000 
10.000 

b 
qsP 

0.0003 
0.0010 
0.0030 
0.0050 
O.OO804 
0.0101 
0.0203 
0.0306 
0.0517 
0.1067 

[ql" 

0.030 
0.100 
0.300 
0.500 
0.804 (0.802)" 
1.010 (1.003) 
2.030 (2.013) 
3.060 (3.030) 
5.170 (5.083) 
10.670 (10.333) 

47.1 
14.2 
4.8 
3.0 
2.0 
1.7 
1.2 
1.1 
1 .o 
1 .o 

c (a) 
- 

0 
0 
0 
0 
0.5 
1 .o 
1.5 
2.0 
3.4 
6.7 

0.100 1 0.010 0.0010 0.010 14.1 0 
2 0.030 0.0030 0.030 4.7 0 
3 0.050 0.0050 0.050 2.8 0 
4 0.100 0.0101 0.101 (0.100)e 1.4 1.0 
5 0.300 0.0306 0.306 (0.303) 0.5 2.0 
6 0.500 0.0517 0.517 (0.508) 0.3 3.3 
7 0.800 0.0843 0.843 (0.821) 0.2 5.4 
8 1 .000 0.1067 1.067 (1.033) 0.2 6.7 

*True value of [ q ] .  
bObtained from eq. (1) based on [q] ' .  
'Obtained from eq. (16). 
dBased on a,,, = 1 X 
eValues in the parentheses are based on k = 1/3. 

g, m = C g, uv = 0.1 mL, V = 100 ml, ut, = 0.01s and to = 100.OS. 

qSp [eq. (17)], eq. (25) indicates that A is inversely related to q ,  at low qsp. 
This means that the foregoing criteria confine eq. (16) to an appropriate range 
of C. Table I1 illustrates the validity of this simple procedure at  a typical 
experimental error structure achievable by employing the conventional ana- 
lytical technique for sample preparation and the light sensor for flow time 
measurements. Here the constant k is taken as 2/3, a value close to the 
theoretical figure for and is larger than the k values for most polymer 
solutions.'o*" Practically, [q] is not very sensitive to k as demonstrated in 
Table 11. For high molecular weight polymer samples, specifically with [ q ]  
ranging from 0.50 to 5.00 dL/g, the concentration in the order of 0.010 g/dL is 
workable as inferred from Table 11. However, more concentrated polymer 
solutions with C equal to or larger than 0.10 g/dL are required for [ q ]  below 
0.50 dL/g. This is relevant to the findings from the viscometric studies on a 
semipolymerized linseed oil-pentaerytriolphthalate and a semipolymerized 
castor oil-pentaerytritolphthalate, both with [q] < 0.12 dL/g.5 Hence, the 
information displayed in Table I1 is essential for selecting the optimum 
concentration for a particular [ q ]  measurement by this single-point method. 

For the DV, we assume a,,/P, = U ~ , / A P , ~  where up, and a,, are the 
standard deviations of Pi and A P ,  respectively. It follows that eqs. (18)-(20), 
(22), and (24) result in 
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At the infinite dilution, eqs. (25) and (26), respectively, reduce to 

Under this particular condition, eq. (17) vanishes. Equations (27) and (28) 
imply that the DV is superior to the W for [ q ]  -c 1.4 dL/g, beyond which 
the latter technique is favorable, if uc = 1 X 
The performance of DV has been justified to be satisfactory at least for 
polystyrene and polyethylene solutions,8 using eq. (16). In fact, the success of 
this particular method has been exploited to monitor the molecular weight 
distribution of polymer by incorporating a DV on line with a size-exclusion 
chromatograph as the Viscosity detector.12 Perhaps, the main disadvantage 
regarding the utility of eq. (16) is that it involves sophisticated instrumenta- 
tion and delicate experimental technique. To eliminate this shortcoming, we 
further perform the following analyses. 

It has been postulated that the product k[qI2  is a linear function of [ q ] :  

g/dL and utJto = 1 X 

m2 = a + b[ql (29) 

where a and b are empirical ~onstants.’~ Substituting eqs. (29) into (1) yields 

Hence, [ q ]  can be estimated directly if a and b are predetermined. Since the 
coefficients a and b are of opposite signs,14 negative k is obtained when [ q ]  is 
smaller or larger than the ratio a/b, depending on the sign of a. This prompts 
us to propose empirically 

where m and n are constants. Combining eqs. (1) and (31) renders 

where 

7SP [TI 
a=--- c2 c 

Equation (32) may be solved by the Newton iterative method, using the 
recursion formula 

~[q]’a’[m - Ina’ + (2 + n)h[q]’] 
[q]’ + (2 + n)Ca’ (33) [VI” = h1’ - 
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TABLE111 
Comparison of [ q]  Values Obtained by Various Methods for 

Polystyrene-Acrylonitrile Copolymer Samples in Butanone at 3OoCa 

1 0.3155 0.2309 0.675 0.67 0.661 
2 0.2653 0.2160 0.750 0.75 0.736 
3 0.6580 0.6350 0.785 0.76 0.758 
4 0.5474 0.5879 0.800 0.82 0.853 
5 0.7325 0.8277 0.825 0.83 0.842 
6 0.4017 0.4507 0.900 0.93 0.931 
7 0.5560 0.9091 1.31 1.23 1.22 

*The values of a and b are respectively equal to -0.39 and 0.93. 

where 

Here [ q]' and [ ql'' are the two successive approximations of [ q]. Equation (33) 
converges readily to a root of [q] by setting the first approximation of 
[ q] < qJC. Hence, [ q] is accessible if m and n are known. 

Khan and Bhargava15 have studied the viscometric behavior of a series of 
styrene-acrylonitrile copolymer samples in butanone at  30"C, with results 
leading to the constants a, by rn, and n equal to -0.39, 0.93, -0.625, and 
0.091, respectively. Because the standard errors of estimate of k (uk) for eqs. 
(29) and (31) are computed to be 0.075 and 0.084, respectively, eq. (30) is 
preferred in this particular case. Table I11 lists a number of the single-point 
measurements of q, for the foregoing polymer solutions after Khan and 
Bharga~a,'~ who have also put forward a unique graphical method to evaluate 
the [ q]. The value of [ q] resulted from eq. (30) are compared favorably with 
those obtained from eq. (1) as well as the Khan-Bhargava plot as shown in 
Table 111. However, the present calculations are simpler than the two extrapo- 
lation procedures. 

Equation (31) is more relevant to polystyrene in toluene at  30°C as it 
registers the smaller uk, based on the data collected by Sutterlin." Here, the 
constants a, b, rn, and n are assessed to be - 0.234, 0.744, - 1.0, and - 0.10 
respectively, for [q] varying from 0.1 to 2.0 dL/g. Incidentally, Weissberg 
et d.16 have also been interested in the above system. Table IV lists their 
results on [q] and k produced by eq. (1) for the three distinct polystyrene 
samples. These precise data are compared with those based on the single-point 
measurements. Here the associated C gives the qr that can be readily obtained 
by the conventional method using eq. (21) for large t at which the kinetic 
effect may be ignored. Clearly, eq. (32) is the most reliable one for the low and 
medium molecular weight resins. However, it is marginally less impressive 
than the other methods for the largest polystyrene displayed in Table IV. 
This is not unexpected as the calibrated rn and n values are invalid for this 
particular application with [ q] > 2.0 dL/g, indicating that the validity of eq. 
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TABLE IV 
Comparison of [ .11] (dL/g) Values Obtained by Various Methods 

for Three Polystyrene Samples in Toluene at 3OoC* l6 

Mwb x 1 0 - ~  0.58 1.46 6.00 

[7JI' 0.345 (0.514)d 
c (g/dL) 1.170 
9, 1.49 
[?I [eq. (211 0.365 

c 11 [e~. (4)i 0.378 
[?I [ e ~ .  ( 5 r  0.377 
[TI ie~. ( 3 0 ~  0.370 (0.302)' 
c 71 [w. ( 3 2 ~  0.358 (0.408)g 

~ 7 ~ 1  [e~. (3)1 0.380 

0.689 (0.362)d 
0.880 
1.76 
0.709 
0.753 
0.745 
0.740 
0.646 (0.591)' 
0.699 (0.381)9 

2.18 (0.273)d 
0.365 
1.95 
2.06 
2.22 
2.19 
2.14 

2.07 (0.342)g 
2.11 (0.300)' 

'The system is characterized by a = - 0.234, b = 0.744, m = - 1.0, and n = - 0.1. 
bWeight-average molecular weight. 
'Computed by eq. (1). 
dValue of k computed by eq. (1). 
'Assuming [v]  x-- 2.5/p. 
' Value of k computed by eq. (29). 
gValue of k computed by eq. (31). 

(31) is crucial in the present analysis. These findings are parallel to the 
comparisons of k values shown in Table IVY bearing in mind that the average 
k value of eqs. (2)-(5) is 0.28 as concluded earlier. I t  is believed that this 
calibrated method would be beneficial to the laboratories engaged in the 
routine [ q ]  determinations, which usually demand high degree of reliability, 
fast speed, and low cost. 

CONCLUSIONS 

The contemporary single-point estimation schemes for [q] are confirmed to 
be inadequate in that they are only applicable to some specific polymer-solvent 
systems. Another existing simple [ q ]  method requires the service of a high 
performance viscometer. In this particular technique, an operative C that 
satisfies inequalities (17) and (18) must be predetermined. Alternatively, one 
may resort to a simplified version of the classical viscometry. This novel 
procedure hinges on either one of the two k-[ q ]  relationships established over 
the interested range of [ 73, by either performing the viscometric experiments 
on a series of dilute polymer solutions covering a wide range of [ q ]  or by 
collecting the relevant information from the literature. For this purpose, the 
lengthy listing of [ql-k data for a variety of polymer-solvent combinations 
compiled by Sutterlin" would be most handy. Although, eqs. (30) and (32) are 
inherently inferior to the Huggins equation as for other one-parameter expres- 
sions cited, they are particularly useful for handling a larger number of [ q ]  
determinations at  a time, and for predicting [ q ]  rapidly in the event that the 
[7] happens to be of secondary importance. In fact, the simple [7] methods 
and the Huggins method are virtually playing two separate roles in char- 
acterizing the molecular weight of polymers. This means that the former 
practices are meant for fast or reasonably rough estimation of [ q ] ,  while the 
latter is best employed for procuring the accurate information on [q]. As such, 



INTRINSIC VISCOSITY MEASUREMENTS 899 

they should not be applied irrationally. In that event, the practical signifi- 
cance of the proposed procedure is apparent. Obviously, the present analyses 
do not apply to the dilute polyelectrolyte solutions whose viscometric behav- 
ior is rather unique. 
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